Sains Malaysiana 54(6)(2025): 1439-1449

http://doi.org/10.17576/jsm-2025-5406-01

 

Assessment of Acute Toxicity, Behaviors and Water Parameter Correlations in Nile Tilapia (Oreochromis niloticus) Exposed to Iron Salts

(Penilaian Ketoksikan Akut, Tingkah Laku dan Korelasi Parameter Air pada Tilapia Nil (Oreochromis niloticus) Terdedah kepada Garam Besi)

 

CARINA B. ORDEN*

 

Faculty of Chemistry, Bicol University Tabaco, Tabaco City, Philippines

 

Diserahkan: 8 Julai 2024/Diterima: 27 Mac 2025

 

Abstract

The study determined the acute toxicity levels and behaviors of Nile tilapia after 96 h exposure to iron salts. It determined the significant correlations (Pearson’s r) between the water parameters, behaviors, and toxicity levels at varied time intervals and concentrations. This study adopted an experimental design framework, randomized triplicate sampling, and OECD Test Guideline No. 203. The acute toxicity test was done in a static method, behavioral clinical signs and opercular beats. Water parameters of pH, temperature, dissolved oxygen (DO), and total organic carbon (TOC) were measured using standard procedures of the OECD Test Guideline No. 203 and Association of Official Analytical Chemists (AOAC). The findings showed the lethal concentration (LC50) and lethal time (LT50) of total ferrous and ferric sulfate were 135.6 mg/L, 9.9 mg/L, and 340 h and 216 h, respectively, through probit analysis. Behaviors were abnormal bottom distribution, hypoventilation, abnormal pigmentation, and bioaccumulation of ferric ions. Opercular beats (OB) decreased as the concentration increased after 96-h exposure. Strong correlations (α = 0.05) were observed between concentration and the water parameters OB and pH in the ferric sulfate solutions, between pH, hardness, TOC, OB, and DO in ferrous sulfate solutions. The findings showed that ferric sulfate poses a greater risk than ferrous sulfate to test animals, implying its use and discharge should be limited in aquatic environments. The water parameters that significantly affected the toxicity levels must be monitored and regulated to mitigate potential adverse effects on aquatic ecosystems.     

Keywords: Acute toxicity; behaviors; iron salts; water parameters

 

Abstrak

Kajian ini menentukan tahap ketoksikan akut dan tingkah laku ikan tilapia Nil selepas 96 jam terdedah kepada garam besi. Ia menentukan korelasi yang ketara (Pearson's r) antara parameter air, tingkah laku dan tahap ketoksikan pada selang masa dan kepekatan yang berbeza. Kajian ini menggunakan rangka kerja reka bentuk uji kaji, pensampelan tiga kali ganda rawak dan Garis Panduan Ujian OECD No. 203. Ujian ketoksikan akut dilakukan dalam kaedah statik, tanda klinikal tingkah laku dan denyutan operkular. Parameter air pH, suhu, oksigen terlarut (DO), dan jumlah karbon organik (TOC) diukur menggunakan prosedur standard Garis Panduan Ujian OECD No. 203 dan Persatuan Ahli Kimia Analitik Rasmi (AOAC). Hasil menunjukkan kepekatan maut (LC50) dan masa maut (LT50) bagi jumlah ferus dan ferik sulfat masing-masing ialah 135.6 mg/L, 9.9 mg/L dan 340 jam dan 216 jam melalui analisis probit. Tingkah laku adalah taburan bawah yang tidak normal, hipoventilasi, pigmentasi yang tidak normal dan biotumpukan ion ferik. Denyut operkular (OB) menurun apabila kepekatan meningkat selepas pendedahan selama 96 jam. Korelasi yang kuat (α = 0.05) diperhatikan antara kepekatan dan parameter air OB dan pH dalam larutan ferik sulfat, antara pH, kekerasan, TOC, OB dan DO dalam larutan ferus sulfat. Hasil menunjukkan bahawa ferik sulfat menimbulkan risiko yang lebih besar daripada ferus sulfat untuk menguji haiwan, membayangkan penggunaan dan pelepasannya harus dihadkan dalam persekitaran akuatik. Parameter air yang mempengaruhi tahap ketoksikan dengan ketara mesti dipantau dan dikawal untuk mengurangkan potensi kesan buruk ke atas ekosistem akuatik.

Kata kunci: Garam besi; ketoksikan akut; parameter air; tingkah laku

 

RUJUKAN

Alam, R., Ahmed, Z., Seefat, S.M. & Nahim, K.T.K. 2021. Assessment of surface water quality around a landfill using multivariate statistical method, Sylhet, Bangladesh. Environmental Nanotechnology, Monitoring & Management 15: 1000422.

Abdel-hakim, N.F., Helal, A.F., Salem, M.F., Zaghloul, A.M. & Hanbal, M.M. 2016. Effect of some heavy metals on physiological and chemical parameters in Nile tilapia (Oreochromis niloticus L.). Journal of Eqyptian Academic Society for Environmental Development 17(1): 81-95. doi: 10.21608/JADES.2016.63382

Baker, R.T.M., Martin, P. & Davies, S.J. 1997. Ingestion of sublethal levels of iron sulfate by African catfish affects growth and tissue lipid peroxidation. Aquatic Toxicology 40: 51-61.

Besmonte, E.L. 2020. Mapping the intangible and tangible heritage of Tabaco City, Philippines. BU R&D Journal 23(1): 47-58.

Carpenter, J.H. 1965. The accuracy of the Winkler method for dissolved oxygen analysis, Limnol. Oceanogr. 10: 135-140. https://doi.org/10.4319/lo.1965.10.1.0135 

City Board Metrics & Systems (CBMS). 2021. Tabaco City.

Chang, R. 2015. Chemistry. 9th ed. Digital Content Manager.

Clarke, W.A., Konhauser, K.O., Thomas, J.C. & Bottrell, S.H. 1997. Ferric hydroxide and ferric hydrosulfate precipitation by bacteria in an acid mine drainage lagoon. FEMS Microbiology Reviews 20(3-4): 351-361.

Dan-Kishiya, A., Solomon, J., Alhaji, U. & Dan-Kishiya, H. 2016. Influence of temperature on the respiratory rate of Nile Tilapia in the laboratory. Cudernis de Investigacion UNED 8(1): 24-28.

Edwin, T., Ihsan, T., Putra, M.A. & Guspariani. 2018. Acute and sub-lethal toxicity test on Oreochromis niloticus exposed with tannery wastewater. International Journal of Advanced Research 6(5): 742-748.

Egnew, N., Renukdas, N., Romano, N., Kelly, A., Lohakare, J., Bishop, W., Lochmann, R. & Sinha, A.M. 2021. Physio-biochemical, metabolic nitrogen excretion and ion-regulatory assessment in largemouth bass (Micropterus salmoides) following exposure to high environmental iron. Ecotoxicology and Environmental Safety 208: 111526.

Flinn Scientific Spectrophotometer Laboratory Manual. 1994. Batavia, IL: Flinn Scientific. pp. 55-60.

Gabriel, U.U. & Erondu, E.S. 2010. Toxicity of roundup (a glycosate product) to fingerlings of Clarias gariepinus. Animal Research International 7(2): 1184-1193.

Gabriel, U.U. & Okey, I.B. 2009. Effect of aqueous leaf extracts of Lepidagathis alopecuroides on the behaviours and mortality of hybrid catfish (Heterobranchus bidorsalisClarias gariepinus ) fingerlings. Research Journal of Applied Sciences, Engineering and Technology 1(3): 116-120.

Gemaque, T., Costa, D., Pereira, L. & Filho, K. 2019. Evaluation of iron toxicity in the tropical fish Leporinus friderici. Biomedical Journal of Scientific & Technical Research 18(2)-2019. BJSTR. MS.ID.003127. doi:10.26717/BJSTR.2019.18.003127

Gonzalez, R.J., Grippo, R.S. & Dunson, W.A. 1990. The disruption of sodium balance in brook charr, Salvelinus fontinalis (Mitchill), by manganese and iron. Journal of Fish Biology 37(5): 765774.

Greenberg, A.E., Trussell, R.R., Clesceri, L.S. & Franson, M.A.H. 1985. Standard Methods for the Examination of Water and Wastewater. 16th ed. Washington, DC.: American Public Health Association.

Gregory, P. & MacFarlane, N.A. 1981. Surface permeability in fishes: Effects of external calcium and toxicant action. In Stress and Fish, edited by Pickering, A.D. London: Academic Press. pp. 343-344.

Grobler-van Heerden, E., van Vuren, J.H. & Du Preez, H.H. 1991. Biocentration of atrazine, zinc, and iron in the blood of Tilapia sparrmanii (Cichlidae). Comp. Biochem. Physiol. 100(3): 629-633.

Harber, A.J. & Forth, R.A. 2001. The contamination of former iron and steel work sites. Environmental Geology 40(3): 324-330.

Hem, J.D. 1985. Study and interpretation of the chemical characteristics of natural water. USGS. Water Supply Paper 2254. Alexandria: USGS.

Hem, J.D. & Skougstad, M.W. 1960. Chemistry of iron in natural water. Geological Survey Water-Supply Paper 1459-E. pubs.usgs.gov/wsp/1459e/report.pdf

Johnson, D.B., Kanao, T. & Hedrich, S. 2012. Redox transformation of iron at extremely low pH: Fundamental and applied aspects. Frontiers Microbiology 3: 96. doi: 10.3389/fmicb.2012.0096

Kimball, B.A., Walton-Day, K. & Runkel, R.L. 2007. Quantification of metal loading by tracer injection and synoptic sampling 1996-2000. In Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, edited by Church, S.E., von Guerard, P., Finger, S.E. San Juan County, Colorado. Reston: USGS. pp. 423-495.

Kusemiju, V., Oluwatoyin, A., Rosemary, E. & Adebayo, O. 2022. Bioaccumulation of heavy metals in Tilapia zilli exposed to industrial effluents under laboratory conditions. Int. J. Ecotoxicol. Ecobiol. 7(1): 1-7. doi: 10.11648/j.ijee.20220701.11

Lappivaara, J., Kiviniemi, A. & Oikari, A. 1999. Bioaccumulation and sub chronic physiological of water-borne iron overload on whitefish exposed in humic and nonhumic water. Archives of Environmental Contamination and Toxicology 37: 196-204.

Lasocki, S., Gallard, T. & Rineau, E. 2014. Iron is essential for living! Critical Care 18: 678. https://doi.org/10.1186/s13054-014-0678-7

Lloyd, R. 1992. Pollution and Freshwater Fish. Great Britain: Fishing News Books. A Division of Blackwell Scientific Publications Ltd. p. 176.

Lopes, T.J. & Fossum, K.D. 1995. Selected Chemical Characteristics and Acute Toxicity of Urban Strom water, Streamflow, and Bed Materials, Maricopa County, Arizona. Arizona: Arizona Department of Environmental Quality. https://books.google.com.ph/books?id=7aOP_aaKCKm4C&pg=PA17&dq=dissolve+iron+and+total+organic+carbon&hi=en

&newbks_redir=1&sa=X&Ved=2ahUKEwiw-fXK7YuCAxWanVYBHZSOAfEQ6AF6BAgKEAi

Luther, G.W. 2016. Inorganic Chemistry for Geochemistry and Environmental Sciences Fundamentals and Applications. Chichester: John Wiley & Sons Ltd. pp. 359 & 397.

Mendoza, L.C., Nolos, R.C., Villaflores, O.B., Apostol, E.M.D. & Senoro, D.B. 2023. Detection of heavy metals, their distribution in Tilapia spp. and health risks assessment. Toxics 11(3): 286.

Muthukumar, G., Anbalagan, R. & Krishnan, K. 2009. Adaptive changes in respiratory movements of an air breathing fish Tilapia mossambicus exposed to Endosulfan. Journal of Industrial Pollution Control 25(1): 67-72.

OECD. 2019. Test No. 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals. OECD Publishing. doi: https://doi.org/10.1787/9789264069961-en

Oladosu, G.A., Ayinla, O.A. & Ajiboye, M.O. 1994. Aetiology, epizootiology and pathology of ‘rusty‐yellow’ skin discolouration of tilapia species Oreochromis niloticas and Tilapia zilii. Journal of Applied Ichthyology 10(2-3): 196-203. doi: 10.1111/J.1439-0426.1994.TB00159.X

Qu, R., Wang, X., Liu, Z., Yan, Z. & Wang, Z. 2013. Development of a model to predict the effect of water chemistry on the acute toxicity of cadmium to Photobacterium phosphoreum. Journal of Hazardous Materials 262: 288-296. https://pubmed.ncbi.nlm.nih.gov/24041821/

Tantarpale, V.T., Rathod, S.H. & Kapil, S. 2012. Temperature stress on opercular beats and respiratory rate of freshwater fish of Ghanna punctatus. International Journal of Scientific and Research Publications 2: 2250-3153.

Slaninova, A., Machova, J. & Svobodova, Z. 2014. Fish kill caused by aluminium and iron contamination in natural pond used for fish rearing: Case report. Veterinarni Medicina 59(11): 573-581. https://www.agriculturejournals.cz/pdfs/vet/2014/11/06.pdf

Smith, M.J. & Heath, A.G. 1979. Acute toxicity of copper, chromate, zinc, and cyanide to freshwater fish: Effect of different temperature. Bulletin Environmental Contaminants Toxicology 22: 113-119. https://doi.org/10.1007/BFO202917

Smith, E.J., Sykora, J.L. & Shapiro, M.A. 1973. Effect of lime neutralized iron hydroxide suspensions on survival, growth, and reproduction of the fathead minnpw (Pimephales promelas). Journal Fisheries Research Board Can. 30: 1147-1153.

Stoiber, R.E., Williams, S.N. & Huebert, B. 1987. Annual contributions of sulfurdioxide to the atmosphere by volcanoes. Journal of Volcanology and Geothermal Research 33(1-3): 1-8.

Strezov, V. & Chaudhary, C. 2017. Impacts of iron and steelmaking facilities on soil quality. Journal of Environmental Management 23(Part 3): 1158-1162.

Sumalapao, D.E.P., Balana, A.J.T., Obias, M.P.E.U. & Reyes, Y.I.A. 2017. Hardness of tap water samples in Manila City, Philippines through complexometric titration. National Journal on Physiology, Pharmacy, and Pharmacology 7(12): 1385-1389.

Van Aardt, W. & Booysen, J. 2004. Water hardness and the effects of Cd on oxygen consumption plasma chlorides and bioaccumulation in Tilapia sparmanii. Water SA 30(10): 57-64. 30.43141wsa v30il.5027

 

*Pengarang untuk surat-menyurat; email: cborden@bicol-u.edu.ph